People writing mathematics in emails, like researchers in mathematics or physics, have probably encountered this difficulty to properly format complex mathematical formulas. The most common technique is just to write text with LaTeX-like or ASCIIMathML-like syntax and hope that the recipient will just understand the expressions. Obviously, this is not really convenient to write and read, some errors may happen and result in misunderstandings between the sender and the recipient. There are other classical issues like how to write the math (special syntax? math panel? handwriting recognition?), accessibility, rendering quality etc Of course, these issues are well-known and expected to be addressed by MathML. Since HTML is a common format for email and MathML is now part of HTML5, this is clearly a good candidate to solve the problem of mathematics in emails.

The idea to use MathML in emails is not new and was already suggested in a screenshot from the Mozilla MathML Project more than 10 years ago. Thunderbird has been able to render MathML in newsfeeds for a long time, provided that the author served his content as XHTML. I may also mention Amaya, which added support for sending a document by email in 2007, although I have never figured out how to configure it to send emails. Two years ago, I tried without success to fix a bug to display XHTML attachment inline and which could be a partial solution to the problem. Finally, one year ago Bob Mathews (from Design Science) asked me about the status of MathML in Thunderbird, and I could unfortunately not give him a better answer than what is in the present paragraph. But I hoped that MathML in HTML5 will change the situation.

Indeed, while I was working on some MathML-in-clipboard patches, I realized that it is now possible to paste MathML inside an email. After further discussions with Bob Mathews, Paul Topping & David Carlisle, I've been able to do more testing. The situation is the following:

  • Thunderbird can send emails containing MathML and render them correctly.
  • Apple Mail (used in Mac OS X and iOS) can receive emails containing MathML and should render them correctly since MathML is enabled in Apple's products.
  • Microsoft Outlook does not render MathML in emails. However the rendering is based on Microsoft Word which has MathML support. Basically, Thunderbird sends MathML in HTML5 and Word displays MathML after an XSLT conversion into Microsoft's own OMML format. Hence Microsoft might be able to do something not too complicated to make the whole stuff work.
  • Web Mail Clients like Gmail or Zimbra seem to filter the MathML in emails and so do not render it correctly. If this filter is removed, they can certainly let the browser do the rendering job or use MathJax to do so.

Now let's consider a basic example about how to send MathML in emails, using Thunderbird. One of the issue is that Gecko's editor has really been designed with only HTML-editing features in mind and if you start editing MathML formulas you are going to get some invalid markup messages or other troubles. And of course Thunderbird does not have any math panel or other WYSIWYG tools to write mathematics. However it might not be too difficult to write an add-on to add MathML editing features in Thunderbird like BlueGriffon's add-on or Firemath (these add-on might even be installed without too much trouble in Thunderbird). Or one can of course use one of the existing tools to generate MathML and just paste the code in Thunderbird. Here I'm going to use the itex2MML filter. So first write your mail in a separate text file:

mail.txt

Hi Matthew, I just read your email about the behavior of the factorial function and harmonic series for large values of $n$. If you denote by $\gamma \approx 0.5772156649$ the Euler's number, by $e \approx 2.7182818284$ the Euler's constant then you have the well-known Stirling's approximation:

$$n! = \sqrt{2 \pi n} {\left( \frac{n}{e} \right)}^n \left( 1 + O \left( \frac{1}{n} \right) \right)$$

where of course I use the classical constant $\pi \approx 3.1415926535$. We also have the following asymptotic expansion:

$$\sum_{k=1}^n \frac{1}{k} = \ln(n) + \gamma + O \left( \frac{1}{n} \right)$$

I hope that this answers your question.

then call itex2MML to replace the LaTeX code by <math> elements:

cat mail.txt | itex2MML > mail.html

Write a new mail in Thunderbird and use the menu "Insert ; HTML" . David Carlisle told me that you have to be sure that the "send as HTML" is enabled if it does not show up. Then just copy the mail.html source into the window:

insert MathML

Once you click the insert button, the MathML should be automatically rendered in Thunderbird:

MathML in Thunderbird

When your email is ready, just send it as usual! Here is how it appears on an iPod:

MathML in Apple Mail

Let's just hope that other mail clients will support MathML in emails!